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Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(φ,X),
L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
In fact same action as covariant Galileons [Deffayet, Esposito-Farese, Vikman].
Galileons are scalars with Galilean symmetry for flat spacetime.
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Examples: G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2

Action is unique modulo integration by parts.

C. Charmousis Black holes in scalar tensor and vector tensor theories



Introduction: Horndeski theory basics
A no hair theorem and ways to evade it

Constructing black hole solutions: Examples
A black hole with primary hair

Vector tensor theories
Conclusions

The issue of time dependance
Shift symmetric Horndeski
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∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(φ,X),
L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
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,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Horndeski theory admits self accelerating vacua with a non trivial scalar field in
de Sitter spacetime. A subset of Horndeski theory self tunes the cosmological
constant.
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Generically ST or SA vacua acquire a non trivial scalar field with flat or de Sitter
metric.
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6
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]

This brings up the issue of time dependance which will be crucial for black holes.
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Self tuning in Horndeski theory

Starting from Horndeski theory with a cosmological constant,
Find the most general scalar-tensor theory with self-tuning property:
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Self tuning in Horndeski theory

Starting from Horndeski theory with a cosmological constant,
Find the most general scalar-tensor theory with self-tuning property:
-Admitting flat space time solution with a non trivial scalar
-For an arbitrary cosmological constant that is allowed to change in time (as a step
function...)
-Without fine tuning the parameters of the theory.
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-Admitting flat space time solution with a non trivial scalar
-For an arbitrary cosmological constant that is allowed to change in time (as a step
function...)
-Without fine tuning the parameters of the theory.

Ljohn =
√
−gVjohn(φ)Gµν∇µφ∇νφ

Lpaul =
√
−gVpaul (φ)(∗R∗)µναβ∇µφ∇αφ∇ν∇βφ

Lgeorge =
√
−gVgeorge(φ)R

Lringo =
√
−gVringo(φ)Ĝ

Fab 4 terms
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Self tuning in Horndeski theory
Starting from Horndeski theory with a cosmological constant,

Ljohn =
√
−gVjohn(φ)Gµν∇µφ∇νφ

Lpaul =
√
−gVpaul (φ)(∗R∗)µναβ∇µφ∇αφ∇ν∇βφ

Lgeorge =
√
−gVgeorge(φ)R

Lringo =
√
−gVringo(φ)Ĝ

Fab 4 terms

All are scalar-curvature interaction terms stemming from Lovelock theory. They
are the unique interaction terms yielding second order field equations.
Theory depends on 4 arbitrary potentials V = Vfab4(φ).
Fab 4 terms can self-tune the cosmological constant for flat spacetime. At the
absence of curvature Fab 4 terms drop out.
Adding a standard kinetic term self tunes to de Sitter [Gubitosy, Linder]
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Example self tuning solution
Consider a slowly varying scalar field in the presence of an arbitrary cc in a time
evolving universe,

Flat spacetime: Milne metric ds2 = −dT 2 + T 2
(

dχ2

1+χ2 + χ2dΩ2
)
...

For simplicity take analytic expansion:

Vjohn = Cj ,Vpaul = Cp ,Vgeorge = Cg + C1
g φ ,Vringo = Cr + C1

r φ−
1
4
Cj φ

2

Friedmann equation reads,
cj (φ̇H)2 − cp(φ̇H)3 − c1g (φ̇H) + ρΛ = 0

with matter source ρΛ = Λ, vacuum cosmological constant. Note that φ̇H
appear as homogeneous powers of time...
Hence since H = 1/t for Milne, taking φ = φ0 + φ1T 2 gives
cj (φ1)2 − cp(φ1)3 − c1g (φ1) + ρΛ = 0 an algebraic constraint.
Integration constant φ1 is fixed by the cosmological constant for arbitrary values
of the theory potentials.
Going to spherically symmetric coords scalar is space and time dependent! Same
holds for De Sitter self tuning...
Non trivial vacua inherently demand a time dependent scalar!
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(X),
L3 = −G3(X)�φ,

L4 = G4(X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
Horndeski theory includes Shift symmetric theories where Gi ’s depend only on X
and φ→ φ+ c.
Associated with the symmetry there is a Noether current, Jµ which is conserved
∇µJµ = 0.
Presence of this symmetry permits a very general no hair argument
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So far...

Even for a static spherically symmetric spacetime scalar field is to be time
dependent if we are going to be in a non trivial branch of solutions
Shift symmetric Horndeski theory provides a conserved Noether current.
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Conformal secondary hair?
No hair theorem for shift symmetric spacetimes
Two generic theorems

Black holes have no hair [recent review Herdeiro and Radu 2015]

During gravitational collapse...
Black holes eat or expel surrounding matter
their stationary phase is characterized by a limited number of charges
and no details
black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding
degrees of freedom lead to singular solutions...
For example in vanilla scalar-tensor theories black hole solutions are GR black holes
with constant scalar.

Warning : beyond GR Birkhoff’s theorem is not valid.
Spherical symmetry thus does not guarantee staticity.
Scalar tensor black holes radiate monopole gravity waves.
There is no reason for metric and scalar not to radiate for spherical symmetry
Let us now see a classical example of a hairy solution...
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Let us now see a classical example of a hairy solution...
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Example: BBMB solution

Consider a conformally coupled scalar field φ:

S[gµν , φ, ψ] =
∫
M

√
−g
( R
16πG

−
1
2
∂αφ∂

αφ−
1
12

Rφ2
)

d4x + Sm[gµν , ψ]

Invariance of the EOM of φ under the conformal transformation{
gαβ 7→ g̃αβ = Ω2gαβ
φ 7→ φ̃ = Ω−1φ

There exists a black hole geometry with non-trivial scalar field and secondary
black hole hair.
The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74 ]
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The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 ]

Static and spherically symmetric solution

ds2 = −
(
1−

m
r

)2
dt2 +

dr2(
1− m

r

)2 + r2
(

dθ2 + sin2 θdϕ2
)

with secondary scalar hair

φ =

√
3

4πG
m

r −m

Geometry is that of an extremal RN.
Problem:The scalar field is unbounded at (r = m).
A cosmological constant can cure this; [MTZ] family of solutions
Secondary hair black hole
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Summary so far

Vacua in Horndeski can be non trivial. Non trivial vacua lead to time dependent
scalars even for flat spacetime.
Time independence for spherical symmetry is not guaranteed. We dont have
Birkhoff’s theorem in scalar tensor theories
No hair theorems are not valid for time dependent spacetimes.

Let us now look at a specific no hair theorem for static and spherically symmetric
spacetimes...
...and shift symmetric theories
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No hair [Hui, Nicolis] [Sotiriou, Zhou] [Babichev, CC, Lehébel]

Static no hair theorem
Consider shift symmetric Horndeski theory with G2, G3, G4, G5 arbitrary functions of
X . We have a Noether current Jµ which is conserved, ∇µJµ = 0.
We now suppose that:

1 spacetime and scalar are spherically symmetric and static,

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dK2, φ = φ(r)

2 spacetime is asymptotically flat, φ′ → 0 as r →∞ and the norm of the current
J2 is finite on the horizon,

3 there is a canonical kinetic term X in the action,
4 and the Gi functions are such that their X -derivatives contain only positive or

zero powers of X .
Under these hypotheses, φ is constant and thus the only black hole solution is locally
isometric to Schwarzschild.

Most interesting part of no go theorem: Breaking any of these hypotheses leads to
black hole solutions!
Theorem can be extended for star solutions. [Lehébel et al.]
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Hair versus no hair [figure: Lehébel]
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Introducing time dependence, q 6= 0

Spherical symmetry certainly does not impose staticity. In fact no hair theorems may
be pointing out to an inconsistency in this direction.

Furthermore, for self accelerating or self tuning solutions one has a time
dependence for the scalar in FRW coordinates
In spherical symmetry this leads to a time and radially depending scalar already
for flat spacetime.
So let us allow time dependence for the scalar as a first step while keeping for a
static and spherically symmetric spacetime.

But is it consistent with respect to the field equations Eφ = 0, and
Eµν = 0 to do so?
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The question of time dependence, qt + ψ(r)

Consistency theorem [Babichev, CC, Hassaine]

Consider an arbitrary shift symmetric Horndeski theory and a scalar-metric ansatz with
q 6= 0. The unique solution to the scalar field equation Eφ = 0 and the “matter flow”
metric equation Etr = 0 is given by J r = 0.

We are killing two birds with one stone.
The current now reads, JµJµ = −h(Jt)2 + (J r )2/f and is regular. Time
dependence renders no hair theorem irrelevant.
Given the higher order nature of Horndeski theory this theorem basically tells us
that if φ = qt + ψ(r) then there exist φ′ 6= 0 solutions to the field equations.
One can prove for some theories that if φ = φ(t, r) then the only compatible φ
are φ = qt + ψ(r) and also φ = φ1(r2 − t2) for flat spacetime (Fab 4 self tuning
solution)
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General solution

Consider, L = R − η(∂φ)2 + βGµν∂µφ∂νφ− 2Λ For static and spherically symmetric
spacetime.

The general solution of theory L for static and spherically symmetric metric and
φ = φ(t, r) is given as a solution to the following third order algebraic equation with
respect to

√
k(r):

(qβ)2
(
κ+ r2

2β

)2
−
(
2κ+ (1− 2βΛ) r2

2β

)
k(r) + C0k3/2(r) = 0

All metric and scalar functions given with respect to k.
For general shift symmetric G2,G4 the result can be extended, [Kobayashi, Tanahashi]

Let us now give some specific examples for the different cases...
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"Sort of" time dependent solutions
Scalar non trivial dynamically

Scalar with constant velocity q 6= 0
Consider the action,

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
...,

Scalar field equation and conservation of current,

∇µJµ = 0, Jµ = (ηgµν − βGµν) ∂νφ.

Take ds2 = −h(r)dt2 + dr2
f (r) + r2dΩ2, and φ = φ(t, r) then

φ = ψ + qt while Etr = − q2Jr
f −→ J r = 0 solves both equations...

βG rr − ηg rr = 0 ie. f = (β+ηr2)h
β(rh)′ or φ′ = 0

For a higher order theory J r = 0 does not necessarily imply φ = const.

J r = 0 means that we kill primary hair since, ∇µJµ = 0→
√
−g(βG rr − ηg rr )∂rφ = c

We now solve for the remaining field eqs...
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√
−g(βG rr − ηg rr )∂rφ = c

We now solve for the remaining field eqs...
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Solving the remaining EoM

From (rr)-component get ψ′

ψ′ = ±
√
r

h(β + ηr2)

(
q2β(β + ηr2)h′ −

ζη + βΛ
2

(h2r2)′
)1/2

.

and finally (tt)-component gives h(r) via,

h(r) = −
µ

r
+

1
r

∫
k(r)

β + ηr2
dr ,

with
q2β(β + ηr2)2 −

(
2ζβ + (ζη − βΛ) r2

)
k + C0k3/2 = 0,

Any solution to the algebraic eq for k = k(r) gives full solution to the system!
...

Lets take η = Λ = 0
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Asymptotically flat limit : Λ = 0, η = 0

Consider S =
∫
d4x
√
−g [ζR + βGµν∂µφ∂νφ]

Algebraic equation to solve: q2β3 − 2ζβk + C0k3/2 = 0→ k = constant!
f (r) = h(r) = 1− µ/r

φ± = qt ± qµ
[
2
√ r

µ
+ log

√
r−√µ√
r+√µ

]
+ φ0...

Consider v = t +
∫

(fh)−1/2dr then ds2 = −hdv2 + 2
√

h/f dvdr + r2dΩ2

Regular chart for horizon, EF coordinates

φ+ = q
[
v − r + 2√µr − 2µ log

(√ r
µ

+ 1
)]

+ const

Scalar regular at future black hole horizon.

Schwarzschild geometry with a non-trivial regular scalar field.
Exterior geometry for star
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Star solutions [Cisterna, Delsate, Rinaldi], [Maselli, Silva, Minamitsuji, Berti]

Consider S =
∫
d4x
√
−g [ζR + βGµν∂µφ∂νφ]

Take stealth solution for exterior and consider PF matter for interior with ρ and
P that does not couple to scalar.
J r = 0, and therefore G rr = 0 which effects star interior.
For fixed star radius β > 0 (β < 0) gives heavier (lighter) stars than GR.
No GR limit for q → 0
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"Sort of" time dependent solutions
Scalar non trivial dynamically

So far...

Horndeski theory admits ST and SA vacua that naturally lead to a softly time
dependent scalar.
Shift symmetry permits the existence of a no hair theorem valid for static
configurations that allows to construct hairy black holes.
Need more work on time dependent metrics.
Higher order Horndeski terms permit novel branches of solutions
Time dependent scalars permit regularity on the black hole horizon
We constructed a simple stealth Schwarzschild black hole that leads to well
defined star solutions distinct from GR

C. Charmousis Black holes in scalar tensor and vector tensor theories



Introduction: Horndeski theory basics
A no hair theorem and ways to evade it

Constructing black hole solutions: Examples
A black hole with primary hair

Vector tensor theories
Conclusions
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Self tuning de Sitter black hole

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
... q2β(β + ηr2)2 −

(
2ζβ + (ζη − βΛ) r2

)
k + C0k3/2 = 0

f = h = 1− µ
r + η

3β r
2 de Sitter Schwarzschild!

ψ′ = ± q
h
√
1− h and φ(t, r) = q t + ψ(r)

The effective cosmological constant is not the vacuum cosmological constant. In
fact,
Self tuning relation : q2η = Λ− Λeff > 0
Hence for any Λ > Λeff fixes q, integration constant.
where Λeff = − η

β
is fixed by effective theory.

Solution hides vacuum cosmological constant leaving a smaller effective
cosmological constant [Gubitosi, Linder]
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Hair versus no hair [Lehébel]

Shift-symmetric
Horndeski theories

Gi(X)

John, ���φ(∂φ)2

e.g. Babichev et al.,
Kobayashi et al. Stealth
Schwarzschild black hole

John
e.g. Rinaldi, Anabalon

et al., Minamitsuji

G4X = 0, G4XX = 0
Babichev et al. Stealth
solutions (⊃ Kerr)

Everything else
Hui-Nicolis theorem

e.g. G4 ⊃
√−X

Babichev et al.
αφĜ ⇔ G5 =
−4α ln |X|
Sotiriou-Zhou

GiX contains ne-
gative powers of X

GiX contains
only positive
powers of X

q 6= 0 q = 0

No asymp-
totic flatness

Asymptotic
flatness

No kinetic term Kinetic term

Jr 6= 0Jr = 0
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The special case of the Gauss-Bonnet invariant
[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, Ĝ = RµναβRµναβ − 4RµνRµν + R2, is a topological
invariant in 4 dimensions.
Variation with respect to the metric gives the 4 dim Lovelock identity,
Hµν = −2PµcdeRν cde + gµν

2 Ĝ = 0. If we couple to scalar then φĜ ceases to be trivial.
It can be obtained in Horndeski theory via G5 ∼ lnX
The theory

LGB =
R
2
−

1
2
∇µφ∇µφ+ αφĜ

is non trivial and shift symmetric. Here, Ĝ (is independent of φ) and acts as a source
to the scalar which cannot be set to zero.

�φ+ αĜ = 0
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�φ+ αĜ = 0

C. Charmousis Black holes in scalar tensor and vector tensor theories



Introduction: Horndeski theory basics
A no hair theorem and ways to evade it

Constructing black hole solutions: Examples
A black hole with primary hair

Vector tensor theories
Conclusions

"Sort of" time dependent solutions
Scalar non trivial dynamically

The special case of the Gauss-Bonnet invariant
[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, Ĝ = RµναβRµναβ − 4RµνRµν + R2, is a topological
invariant in 4 dimensions.
If we couple to scalar then φĜ ceases to be trivial.
It can be obtained in Horndeski theory via G5 ∼ lnX
The theory

LGB =
R
2
−

1
2
∇µφ∇µφ+ αφĜ

is non trivial and shift symmetric. Here, Ĝ (is independent of φ) and acts as a source
to the scalar which cannot be set to zero.

�φ+ αĜ = 0
Numerical solution can be found where the scalar and mass integration constants
are fixed so that the solution is regular at the horizon.
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The mass of the black hole has a minimal size fixed by the GB coupling α. The
singularity is attained at positive r .
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The solution has infinite current norm at the horizon because J r 6= 0
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It can be obtained in Horndeski theory via G5 ∼ lnX
The theory

LGB =
R
2
−

1
2
∇µφ∇µφ+ αφĜ

is non trivial and shift symmetric. Here, Ĝ (is independent of φ) and acts as a source
to the scalar which cannot be set to zero.

�φ+ αĜ = 0
Solutions with q 6= 0 and regular Noether current are in a different branch and
are singular.
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"Sort of" time dependent solutions
Scalar non trivial dynamically

So far...

For q 6= 0 we can find solutions analytically for G2,G4 and otherwise numerically
For q = 0 we need to source the scalar field equation breaking one of the
hypotheses of the theorem [Babichev, CC, Lehébel]

For generic Horndeski we can use KK of known Lovelock solutions to construct
black holes [CC, Gouteraux, Kiritsis]

Slow rotation gives identical correction to GR. Stationary solutions not known
except for stealth Kerr...
In dense matter regions how does scalar couple to matter? Neutron stars etc...
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Conformally coupled scalar field

Consider a conformally coupled scalar field φ revisited:

S[gµν , φ, ψ] =
∫
M

√
−g
( R
16πG

−
1
2
∂αφ∂

αφ−
1
12

Rφ2
)

d4x + Sm[gµν , ψ]

Invariance of the EOM of φ under the conformal transformation{
gαβ 7→ g̃αβ = Ω2gαβ
φ 7→ φ̃ = Ω−1φ

There exists a black hole geometry with non-trivial scalar field and secondary
black hole hair.
The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74 ]
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BBMB completion [CC, Kolyvaris, Papantonopoulos and Tsoukalas]

We would like to combine the above properties in order to obtain a hairy black
hole.
Consider the following action, S(gµν , φ, ψ) = S0 + S1 where

S0 =
∫

dx4
√
−g
[
ζR + η

(
−
1
2

(∂φ)2 −
1
12
φ2R
)]

and

S1 =
∫

dx4
√
−g
(
βGµν∇µΨ∇νΨ− γTBBMB

µν ∇µΨ∇νΨ
)
,

where

TBBMB
µν =

1
2
∇µφ∇νφ−

1
4
gµν∇αφ∇αφ+

1
12

(gµν�−∇µ∇ν + Gµν)φ2 .

Scalar field equation of S1 contains metric equation of S0.

∇µJµ = 0 , Jµ =
(
βGµν − γTBBMB

µν

)
∇νΨ .
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Scalar φ has an additional branch regular at the "horizon"
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f (r) = h(r) = 1−
m
r

+
γc20
12βr2

,

φ(r) =
c0
r
,

ψ′(r) = ±q

√
mr − γc20

12β

r h(r)
,

βη + γ(q2β − ζ) = 0 .
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Black hole with primary hair
Solve as before assuming linear time dependence for Ψ
Scalar φ has an additional branch regular at the "horizon"

f (r) = h(r) = 1−
m
r

+
γc20
12βr2

,

φ(r) =
c0
r
,

ψ′(r) = ±q

√
mr − γc20

12β

r h(r)
,

βη + γ(q2β − ζ) = 0 .

Scalar charge c0 playing similar role to EM charge in RN
Galileon Ψ regular on the future horizon

ψ = qv − q
∫

dr
1±
√

1− h(r)
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Horndeski-Maxwell theory
Curvature as effective mass

A vector tensor interaction

Consider the following completion to Einstein Maxwell theory [Horndeski],

S[g ,A] =
∫ √

−g d4x
[
R − 2Λ−

1
4
F2 + γFµνFρσPµνρσ

]
.

The additional vector-curvature interaction is due to Horndeski and corrects EM
in curved spacetime.
The theory has U(1) symmetry
In flat spacetime we have Maxwell equations
Unique such term with second order eom

The above theory obeys Birkhoff’ s theorem
but breaks EM duality. The solutions have unusual asymptotics akin to Lifschitz or
conical spacetimes
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Horndeski-Maxwell theory
Curvature as effective mass

Einstein Proca theory

Consider the following tensor-vector theory,

S[g ,A] =
∫ √

−g d4x
[
R − 2Λ−

1
4
F2 −

µ2

2
A2
]
.

Proca field is "Maxwell field" with mass µ and no longer has U(1) gauge
symmetry.
No analytic RN type black hole solutions are known for the Proca field. It spoils
usual asymptotics of RN.
this theory is similar to a shift symmetric scalar tensor theory where ∇µφ→ Aµ
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Horndeski-Maxwell theory
Curvature as effective mass

A modified Proca theory [Babichev, CC, Hassaine]

Consider the following tensor-vector theory,

S[g ,A] =
∫ √

−g d4x
[
R − 2Λ−

1
4
F2 + βGµνAµAν

]
.

For β 6= 0 we have a modified Maxwell theory of effective mass µ with an
additional gravity-vector interaction term GµνAµAν .
Here, mass feeds in to the photon at strong curvature. In flat spacetime we have
Maxwell equations and the field here can still be a Maxwell field.
It could modify predictions for cosmological magnetic fields. It is a well defined
modification of gravity.

C. Charmousis Black holes in scalar tensor and vector tensor theories



Introduction: Horndeski theory basics
A no hair theorem and ways to evade it

Constructing black hole solutions: Examples
A black hole with primary hair

Vector tensor theories
Conclusions

Horndeski-Maxwell theory
Curvature as effective mass

From scalar tensor to a vector-tensor theory
Putting it all together,

S[g ,A] =
∫ √

−g d4x
[
R − 2Λ−

1
4
F2 −

µ2

2
A2 + βGµνAµAν

]
.

This theory is similar to the previous scalar tensor theory where ∇µφ→ Aµ.
Before we had a scalar field φ = qt + ψ(r). Now we have a vector with
Aµdxµ = a(r)dt + χ(r)dr .
So the velocity charge q is now replaced by an electric potential function
q → a(r) whereas ∇µψ → χ

χ is gauge freedom for Maxwell (µ = 0) but is not gauge otherwise. So we
cannot discard it!
Metric field equations are the same but we now have a Proca EOM for the
vector,

Hν := ∇µ(Fµν)− µ2Aν + 2βAµGµν = 0

It can be regarded as a modified Maxwell equation
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From scalar tensor to a vector-tensor theory
Putting it all together,

S[g ,A] =
∫ √

−g d4x
[
R − 2Λ−

1
4
F2 −

µ2

2
A2 + βGµνAµAν

]
.

This theory is similar to the previous scalar tensor theory where ∇µφ→ Aµ.
Before we had a scalar field φ = qt + ψ(r). Now we have a vector with
Aµdxµ = a(r)dt + χ(r)dr .
So the velocity charge q is now replaced by an electric potential function
q → a(r) whereas ∇µψ → χ

χ is gauge freedom for Maxwell (µ = 0) but is not gauge otherwise. So we
cannot discard it!
Metric field equations are the same but we now have a Proca EOM for the
vector,

Hν := ∇µ(Fµν)− µ2Aν + 2βAµGµν = 0

It can be regarded as a modified Maxwell equation
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Solving the field equations

Consider spacetime,

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dΩ2

2,κ

As before we solve for f and χ... We then make the substitution,

h(r) = −
2M
r

+
1
r

∫
k(r)

µ2r2 + 2βκ
dr

yielding at the end, [
(µ2r2 + 2βκ)(r a)′√

k(r)

]′
= (1 − 4β)a(r)

[
(µ2r2 + 2βκ)√

k(r)

]′
C1k

3/2 − k

[
2βκ + r2(

µ2

2
− βΛ)

]
+

1

8

(
µ
2r2 + 2βκ

)2 [
[(ra)′ ]2 − (1 − 4β)(a2r)′

]
= 0

When a(r) = q we are almost back to scalar tensor
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Horndeski-Maxwell theory
Curvature as effective mass

Example solutions: Solitons for β = 1/4 and adS
asymptotics

Integration constants, C1,Q,Q2,M
One can find the general solution for β = 1/4 and C1 = 0 with spherical
symmetry
Regular asymptotics akin to adS spacetime and asymptotically flat solutions
(µ = Λ = 0).
adS solitons
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Horndeski-Maxwell theory
Curvature as effective mass

Example solutions: β = 1/4

Integration constants, C1,Q,Q2,M
Fixing C1, AdS asymptotics. Similar solution to adS Sch.
Coulomb charge Q
Q2 is like a Proca charge acting as effective curvature.
Regular soliton solution for M = 0 with adS asymptotics.
The additional "John" term regularizes asymptotics

h(r) =
2µ2

3
r2 +

2Q2
2µ

2 − 6µ2 − Λ

Λ − 2µ2
−

2M

r
+

(Q2
2µ

2 − 2µ2 − Λ)2
√

2µ(Λ − 2µ2)2
arctan (

√
2rµ)

r
,

f (r) = h(r)

 r2 + 1
2µ2

r2 +
Q2
2−4

2
(

Λ−2µ2
)


2

., a(r) =
Q

r
+ #Q2 + #

arctan r

r
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Conclusions

Starting from a no hair theorem we have seen how to construct hairy black holes.
Similar theorem exists for neutron stars.
Using Lovelock solutions we can construct black holes in Horndeski theory.
Many questions about stability of solutions; staticity of spacetime quite unclear
Higher order terms essential for novel branches of black holes
One can construct solutions with EM fields and black hole solutions with primary
hair by adding additional scalar fields
Techniques for shift symmetric Horndeski can be extended to Maxwell-Proca
theories.
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Slowly rotating solutions [Maselli, Silva, Minamitsuji, Berti]

Using the Hartle Thorne perturbative approximation in which frame-dragging is
assumed linear in angular velocity

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2θdϕ2)− 2ω(r)r2sin2θdtdϕ,

We get an ode to linear order:

2(1− βX)
[
ω′′ +

ω′

2

( f ′
f

+
8
r
−

h′

h

)]
− 2βX ′ω′ = 0

which agrees with GR for X constant.
What happens for X 6= const.
We can integrate once,

(1− βX)ω′ =
C1
√
k

r4(1 + r2
2β )

but, one can show by using remaining field equations that correction is always
identical to GR [Lehébel].
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